Algebraic-Geometric Code and Modernised Algebraic Decoding

Dr. Li Chen

- Lecturer, School of Information Science and Technology, Sun Yat-sen University
- BSc, MSc, PhD, MIEEE
- Website: <u>http://sist.sysu.edu.cn/~chenli</u>

Personal Background

- Education and employment
 - 2003, BSc in Applied Physics, Jinan University, China
 - 2004, MSc in Communications and Signal Processing, Newcastle University, UK
 - 2008, PhD in Mobile Communications, Newcastle University, Supervisor: Prof. R. A. Carrasco (IET Fellow)
 - 2007 2010, Research Associate, Newcastle University, engaged with an EPSRC project.
 - 2010 -- .., Lecturer, Sun Yat-sen University
- Research Interests
 - Information theory and channel coding
 - Cooperative system

Outline

Part I - Algebraic-geometric codes

- Construction of Hermitian Codes
- Algebraic soft decoding of Hermitian codes
- Performance evaluation (Hermitian vs. RS)
- Image: Made in UK)

Part II - Modernised algebraic decoding

- □ Challenges \rightarrow Inspiration
- Modernisation: Progressive algebraic soft decoding (PASD)
- Complexity reduction and performance evaluation
- (Made in China)

Conclusions and future work

I.Construction of Hermitian Codes

- Hermitian Curve: $H_w(x, y, z) = x^{w+1} + y^w z + y z^w$
 - Affine component: $H_w(x, y, 1) = x^{w+1} + y^w + y used$ for code construction!
- Size of GF(q) decides the degree of the curve: $w = \sqrt{q}$
- Genus of the curve: g = w(w-1)/2
- Designed distance of a (n, k) Hermitian code: $d^* = n k g + 1$
- Size of the code: number of affine points $p_i = (x_i, y_i), |p_i| = w^3 (> q)$

GF(q) Paras	GF(4)	GF(16)	GF(64)	GF(256)
deg	3	5	9	17
g	1	6	28	120
n	8	64	512	4096
	GF(q) Paras deg g n	GF(q) ParasGF(4)deg3g1n8	GF(q) ParasGF(4) GF(16)deg3g1n8	GF(q) ParasGF(4)GF(16)GF(64)deg359g1628n864512

I.Construction of Hermitian Codes

- Point of infinity p_{∞} : for points that we can find in $H_w(1, y, z)$, $H_w(x, 1, z)$ and $H_w(x, y, 1)$, the one with the form of $(x_i, y_i, 0)$.
 - □ Variables *x*, *y*, *z* have a pole order (or weights) at p_{∞} , *x w*, *y w*+1, *z* --? (depends on *k*).
- Affine points p_i : points on an affine component. E.g. for $H_w(x, y, 1)$, p_i satisfies $H_w(x_i, y_i, 1) = 0$.
- Pole basis L_w : a set of rational functions Φ_{α} with increasing pole orders
 - Curve H_2 has $L_2 = \{1, x, y, x^2, xy, y^2, x^2y, xy^2, y^3, x^2y^2, xy^3, y^4, ...\}$
 - Curve H_4 has $L_4 = \{1, x, y, x^2, xy, y^2, x^3, x^2y, xy^2, y^3, x^4, x^3y, x^2y^2, xy^3, y^4, x^4y, x^3y^2, x^2y^3, xy^4, y^5, ...\}$
- Zero basis $Z_{w,pi}$: a set of rational functions $\psi_{w,pi}$ with increasing zero orders at p_i .

I.Construction of Hermitian Codes

- For a Hermitian code defined on the curve H_w :
 - Find out *n* affine points on the curve decide the length of the code
 - Select the first k monomials in L_w decide the dimension of the code
 - □ With information symbols $(u_0, u_1, ..., u_{k-1}) \in GF(q)$, the message polynomial can be written as:

$$u(x, y) = u_0 \Phi_0 + u_1 \Phi_1 + \dots + u_{k-1} \Phi_{k-1}$$

• And the codeword is generated by:

$$(c_0, c_1, ..., c_{n-1}) = (u(p_0), u(p_1), ..., u(p_{n-1}))$$

- Example: Construct a (8, 4) Hermitian code defined over GF(2²)
 - Curve: $H_2 = x^3 + y^2 + y$
 - □ Affine points $p_0 = (0, 0)$, $p_1 = (0, 1)$, $p_2 = (1, \sigma)$, $p_3 = (1, \sigma^2)$, $p_4 = (\sigma, \sigma)$, $p_5 = (\sigma, \sigma^2)$, $p_6 = (\sigma^2, \sigma)$, $p_7 = (\sigma^2, \sigma^2)$.
 - Information symbols 1, σ , 1, σ^2 , and message polynomial $u(x, y) = 1 + \sigma x + y + \sigma^2 x^2$.
 - Codeword $(c_0, c_1, c_2, c_3, c_4, c_5, c_6, c_7) = (1, 0, \sigma, \sigma^2, \sigma, \sigma^2, \sigma^2, \sigma^2, \sigma).$

I.A Comparison with RS Codes

Codes Properties	(<i>n</i> , <i>k</i>) RS code	(n, k) Hermitian code
Algebraic affine curves	<i>y</i> = 0	$x^{w+1} + y^w + y = 0$
Pole basis	1, <i>x</i> , <i>x</i> ² , <i>x</i> ³ ,	1, x, y, x^2 , xy, y^2 ,, $x^w y$, $x^{w-1}y^2$,, xy^w , y^{w+1} ,
Affine points (p)	$x_{0,} x_{1}, x_{2}, \dots, x_{n-1}$	$(x_0, y_0), (x_1, y_1), (x_2, y_2), \dots, (x_{n-1}, y_{n-1})$
Transmitted message polynomial (<i>u</i>)	$ u(x) = u_0 + u_1 x + u_2 x^2 + \dots \\ + u_{k-1} x^{k-1} $	$u(x, y) = u_0 + u_1\phi_1 + u_2\phi_2 + \dots + u_{k-1}\phi_{k-1}$
Codeword (\bar{c})	$(c_0, c_1, \dots, c_{n-1}) = (u(x_0), u(x_1), \dots, u(x_{n-1}))$	$(c_0, c_1,, c_{n-1}) = (u(p_0), u(p_1),, u(p_{n-1}))$

I.A Comparison with RS codes

- Advantage of AG codes: larger codes can be constructed from the same finite field as RS codes, resulting better error-correction capability;
- Example, over GF(64)

Rate	e 0.3	Rate 0.56			
Herm (512, 153)	RS (63, 19)	Herm (512, 289)	RS (63, 35)		
d* = 332	d = 45	d* = 196	d = 29		
τ = 165	τ = 22	τ = 97	τ = 14		
990 bits	132 bits	582 bits	84 bits		

 Disadvantage of AG codes: It is not a Maximum Distance Separable (MDS) code. Very high rate AG codes will be left with marginal error-correction capability.

I.A Comparison with RS codes

• AG vs. concatenated RS (512 \approx 8 × 63)

- Complexity: **O**(*n*^{*h*})
- Distribution of errors

Diversity on codes

I.Overview of the algebraic decoding

Decoding philosophy evolution

The Berlekamp-Massey algorithm The Welch-Berlekamp algorithm The Sakata algorithm with majority voting

The Guruswami-Sudan algorithm (Hard-decision) The Koetter-Vardy algorithm (Soft-decision)

[Guruswami99], [Koetter03]

I.Overview of the algebraic decoding

- Key processes: Interpolation (construct Q(x, y, z)) + Factorisation (find out u(x, y))
- From hard-decision decoding to soft-decision decoding (GS → KV)

Hard-decision received word: $\overline{R} = (r_0, r_1, ..., r_{n-1})$ Interpolated points: $(p_0, r_0), (p_1, r_1), ..., (p_{n-1}, r_{n-1})$ With certain multiplicity value *m*, perform:

I.Algebraic soft decoding of Hermitian codes

- From RS to Hermitian: [Chen09], [Lee10]
 - □ Bivariate monomials (polynomials) \rightarrow trivariate monimials (polynomials)
 - Define the interpolated zero conditions
 - Calculate the corresponding coefficients of a Hermitian curve
 - Validity of the algorithm
 - Optimal performance bound
 - Complexity reduction methods

I. Trivariate monomials (Polynomials)

- For a code defined on the curve $H_w = x^{w+1} + y^w + y$,
 - □ monomial $x^i y^j z^k$, $0 \le i \le w$, $j \ge 0$ and $k \ge 0$
 - Decoding a (n, k) Hermitian codes, $\deg_w(z) = \deg_w(\varphi_{k-1})$
 - $\Box \quad \deg_w(x^i y^j z^k) = iw + j(w+1) + k \deg_w(z)$
 - For to monomials $x^{i1}y^{j1}z^{k1}$ and $x^{i2}y^{j2}z^{k2}$

$$x^{i1} y^{j1} z^{k1} < x^{i2} y^{j2} z^{k2}$$

if $\deg_w(x^{i1}y^{j1}z^{k1}) < \deg_w(x^{i2}y^{j2}z^{k2})$, or $\deg_w(x^{i1}y^{j1}z^{k1}) = \deg_w(x^{i2}y^{j2}z^{k2})$ and k1 < k2.

• A lexicographic order can be assigned to monomials.

• Polynomials
$$Q(x, y, z) = \sum_{a,b\in N} Q_{ab} \phi_a(x, y) z^b$$
, $Q_{ab} \in GF(q)$

Identify the maximal monomial in Q(x, y, z) as $\Phi_{a'} z^{b'}$, then $\deg_w(Q) = \deg_w(\Phi_{a'} z^{b'})$

- Leading order, $lod(Q) = ord(\Phi_{a'}z^{b'})$
- $N_w(\delta) = |\{\phi_a z^b : \deg_w(\phi_a z^b) \le \delta, (a, b, \delta) \in N\}|$ Define

Define the number of monomials

 $\Delta_{w}(v) = \min\{\delta : N_{w}(\delta) > v, v \in N\}$ Define the weighted degree of monomials

I.Define the Interpolated Zero Conditions

- To interpolate unit (p_i, r_i) (or (x_i, y_i, r_i))
- Recall the zero basis $Z_{w,pi}$ with rational functions $\psi_{pi,\alpha}$ as:

$$\psi_{p_i,\alpha} = \psi_{p_i,\lambda+(w+1)\delta} = (x - x_i)^{\lambda} [(y - y_i) - x_i^{w} (x - x_i)]^{\delta}, (0 \le \lambda \le w, \delta \ge 0)$$

- Zero condition with multiplicity *m* for polynomial $Q(x, y, z) = \sum_{a,b\in N} Q_{ab} \phi_a(x, y) z^b$
 - It can be written as: $Q(x, y, z) = \sum_{\alpha, \beta \in N} Q_{\alpha\beta}^{(p_i, r_i)} \psi_{p_i, \alpha} (z r_i)^{\beta}$

$$\Box \quad Q_{\alpha\beta}^{(p_i,r_r)} = 0 \text{ for } \alpha + \beta < m.$$

• Since
$$\phi_a = \sum_{\alpha \in N} \gamma_{a, p_i, \alpha} \psi_{p_i, \alpha}$$
 and $z^b = \sum_{\beta \leq b} {b \choose \beta} r_i^{b-\beta} (z-r_i)^{\beta}$
$$Q_{\alpha\beta}^{(p_i, r_i)} = \sum_{a, b \geq \beta} Q_{ab} {b \choose \beta} \gamma_{a, p_i, \alpha} r_i^{b-\beta}$$
[Nielsen01]

A key parameter for determining the polynomial's zero condition!

Calculate the Corresponding Coefficients

• Lemma:
$$\phi_a = \sum_{\alpha \in N} \gamma_{a, p_i, \alpha} \psi_{p_i, \alpha} \longleftrightarrow \psi_{p_i, \alpha} = \sum_{a \in N} \zeta_a \phi_a$$
, $\psi_{p_t, \alpha} = \sum_{a \in N, a < L} \zeta_a \phi_a + \phi_L$.

Recursive corresponding coefficient search algorithm [Chen08]

Algorithm A: Determining the corresponding coefficients $\gamma_{a,p_t,\alpha}$ between a pole basis monomial ϕ_a and zero basis functions $\psi_{p_t,\alpha}$. Step 1: Initialise all corresponding coefficients $\gamma_{a,p_t,\alpha} = 0$; Step 2: Find the zero basis function $\psi_{p_t,\alpha}$ with $LM(\psi_{p_t,\alpha}) = \phi_a$, and let $\gamma_{a,p_t,\alpha} = 1$; Step 3: Initialise function $\hat{\psi} = \psi_{p_t,\alpha}$; Step 4: While $(\hat{\psi} \neq \phi_a)$ { Step 5: Find the second largest pole basis monomial ψ_{L-1} with coefficient ζ_{L-1} in $\hat{\psi}$; Step 6: In Z_{w,p_t} , find a zero basis function $\psi_{p_t,\alpha}$ whose leading monomial $LM(\psi_{p_t,\alpha}) = \phi_{L-1}$, and let the corresponding coefficient $\gamma_{a,p_t,\alpha} = \zeta_{L-1}$; Step 7: Update $\hat{\psi} = \hat{\psi} + \gamma_{a,p_t,\alpha}\psi_{p_t,\alpha}$;

I.Validity of the Algorithm

<u>Condition 1:</u> From the perspective of solving a linear equation group

Condition 2: From the perspective of solving equation Q(x, y, u) = 0 $S_{M}(C) > \deg_{w}(Q(x, y, z))$ Total zero order of Q

Pole order of Q

Theorem 2: Given the multiplicity matrix **M** and the resulting interpolated polynomial Q(x, y, z), if the codeword score $S_{M}(C)$ is large enough such that:

$$S_{M}(\overline{C}) > \deg_{w}(Q(x, y, z))$$

message polynomial u can be found out by factorising Q as: $z - u \mid Q(x, y, z)$ or Q(x, y, u) = 0. \rightarrow This gives a tight condition of successful list decoding!!!

[Chen09]

I.Prove the Validity of the Algorithm

 A corollary that can embrace both of the successful decoding conditions.
 Corollary 3: Message polynomial f can be found out by z - u | Q(x, y, z) if S_M(C) > Δ_w (C_M)

Since $\Delta_w(C_M)$ guarantees $N_w(\delta) > C_M$ (Condition 1 is met!)

Remark: Solving the linear polynomial group does not give a tight bound on successful list decoding, but solving the polynomial Q(x, y, u) = 0 does!

I.Optimal Performance Bound

• Corollary 4: Let $w_z = \deg_w(\Phi_{k-1})$, $N_w(\delta) > \delta(\delta - g)/2w_z$ given $\delta > 2g - 1$. And $N_w(\delta) = \delta^2/2w_z$ with $\delta \rightarrow \infty$.

 With / →∞, algebraic soft decoding algorithm's asymptotic optimal performance can be achieved.

 $I \to \infty, C_{\mathsf{M}} \to \infty$ and $\Delta_w(C_M) \to \infty$, it results $\Delta_w(C_M) \cong \sqrt{2w_z C_M}$

• Corollary 3 ($S_M(_C) > \Delta_w$ (CM)) can be interpreted as:

[Chen09]
$$\sum_{j=0}^{n-1} \widehat{m}_{i,j} > \sqrt{w_z \sum_{i=0}^{q-1} \sum_{j=0}^{n-1} m_{i,j} (m_{i,j} + 1)}.$$

I.Optimal Performance Bound

- Asymptotic condition (when $C_M \rightarrow \infty$): $\frac{\pi_{i,j}}{n} = \frac{m_{i,j}}{s}$
- We could further have

$$\frac{s}{n}\sum_{j=0}^{n-1}\widehat{\pi}_{i,j} > \frac{s}{n}\sqrt{w_z\sum_{i=0}^{q-1}\sum_{j=0}^{n-1}\pi_{i,j}(\pi_{i,j}+\frac{n}{s})}.$$

Since with $s \rightarrow \infty$, $n/s \rightarrow 0$ and

$$\sum_{j=0}^{n-1} \widehat{\pi}_{i,j} > \sqrt{w_z} \sum_{i=0}^{q-1} \sum_{j=0}^{n-1} \pi_{i,j}^2.$$

In KV decoding of RS codes, *w*, is replaced by *k* - 1

- The performance of the KV algorithm is bounded by the quality of the received information Π.
- Had the quality of Π been improved, optimal performance bound can be enhanced.
 [El-Khamy06]

I.Complexity Reduction Methods

- Modified reliability transform algorithm (introducing a stopping criterion) [Chen09]
 - □ In KV, reliability transform is stopped once a predefined s = $\sum_{i,j} m_{i,j}$ is met.
 - □ Reliability transform is stopped once a predefined output list size *I* is met.
- Pre-calculation of the corresponding coefficients [Chen08]
 - Determine $\gamma_{a,p_i,\alpha}$
- Elimination of the unnecessary polynomials in the group [Chen07]
 - Eliminate polynomials with $lod(Q) > C_M$

I.Complexity reducing interpolation

 Pre-calculation of the corresponding coefficients and elimination of the unnecessary polynomials

In the end, the minimal polynomial Q in group G is chosen!

I.Complexity reducing interpolation

The (64, 19) Hermitian code

I. Arising Awareness

- Why Condition 1 ($N_w(\delta) > C_M$) is NOT a tight bound?
- Since $Iod(Q^*) \le C_M$, if $deg_w(Q^*) = \delta^*$, then

$$N_{\rm w}(\delta^*) \leq C_{\rm M} \iff N_{\rm w}(\delta) > C_{\rm M}$$

- $N_w(\delta) > C_M$ is the successful decoding criterion w.r.t. the polynomial group *G*. However, the minimal polynomial in *G* does not meet this condition.
- To access the decoding performance, only Condition 2 gives a tight bound: $S_{M}(C) > \deg_{w}(Q(x, y, z))$
- Since $\deg_w(Q(x, y, z)) \le \Delta_w(C_M)$, without performing the interpolation process, the theoretical assessment (e.g. $S_M(_C) > \Delta_w(C_M)$) produces a relatively negative results.

I.Performance Evaluation

Hermitian code (512, 289) over AWGN channel

I.Hermitian code ~ RS code

Both codes are defined in GF(64), over AWGN channel

Codes Output size	Hermitian (512, 289)	RS (63, 35)	RS (255, 144)
l = 1	C = 892	C = 103	C = 430
l = 2	C = 1813	C = 204	C = 859
l = 5	C = 4602	C = 715	C = 3004

I.Hermitian code ~ RS code

Hermitian code is defined in GF(64) and RS code is defined in GF(256)

Codes Output size	Hermitian (512, 289)	RS (63, 35)	RS (255, 144)
l = 1	C = 892	C = 103	C = 430
l=2	C = 1813	C = 204	$\rightarrow C = 859$
l = 5	C = 4602	C = 715	C = 3004

II. Modernised algebraic decoding

- Challenges \rightarrow Inspirations
- Modernisation: Progressive algebraic soft decoding (PASD)
- Complexity reduction and performance evaluation

II. Challenges \rightarrow Inspirations

- The algebraic soft decoding is of high complexity, mainly due to the iterative interpolation process
- A rebound thinking a common phenomenon for most of the modern decodings

Inspiration: Can we design an algebraic decoder which can also <u>adjust</u> its complexity according to the quality of the received word?

We can 'borrow' the idea from iterative decoding!

II. Challenges \rightarrow Inspirations

- A review towards the modern codes (LDPC or Turbo codes)
 - The Belief Propagation (BP) algorithm with a parity check matrix H

- An iterative process
- Incremental computations between iterations
- A continue test of the decoding output
- \bullet Decoding capability and complexity can be adjusted according to the quality of $\ \Re$

II. Modernised algebraic decoding

- The existing complexity reduction approaches
- Facilitated reliability transform: $M = \lfloor \lambda \cdot \Pi \rfloor$ [Gross06]
- Coordinate transform: {(α_0, y_0), (α_1, y_1), ..., (α_{k-1}, y_{k-1}), (α_k, y_k), ..., (α_{n-1}, y_{n-1})}

{ $(\alpha_0, 0), (\alpha_1, 0), ..., (\alpha_{k-1}, 0), (\alpha_k, y_k), ..., (\alpha_{n-1}, y_{n-1})$ } [KoetterITW03]

- Elimination of unnecessary polynomials: $G = \{Q \mid lod(Q) \le C_M\}$ [Chen07]
- Hybrid decoding: $\begin{array}{c} \Pi \\ & BM \\ & & \hat{c} \end{array} \quad [Gross06] \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$

II.Construction of a (n, k) RS code

The message polynomial evaluation

□ Let $\boldsymbol{u} = (u_0, u_1, ..., u_{k-1}) \in GF(q)$ be a message vector, forming a message polynomial:

$$u(x) = u_0 + u_1 x + \dots + u_{k-1} x^{k-1}$$

□ Choosing n ($n \le q$) distinct elements $\alpha_0, \alpha_1, ..., \alpha_{n-1} \in GF(q) \setminus \{0\}$, the output codeword **c** can be generated as

$$\mathbf{c} = (c_0, c_1, ..., c_{n-1}) = (u(\alpha_0), u(\alpha_1), ..., u(\alpha_{n-1}))$$

If c_6 is the transmitted codeword, PASD completes the decoding with l = 1 rather than l = 5 as the KV algorithm – Optimizing the assignment of decoding parameters & complexity.

II. The PASD decoding system

 I_{v} designed output list size at each iteration;

 I_{max} - the designed maximal output list size;

I'- step size for updating the output list size;

L- the output list of all polynomials p(x) such that y-p(x)|Q(x, y).

Two key steps: Progressive Reliability Transform (PRT) \rightarrow M₁, M₂, ..., M_v, ... Progressive Interpolation (PIP) \rightarrow Q₁(x, y), Q₂(x, y), ..., Q_v(x, y), ...

[Tang11]

II. Defining the zero condition constraints

- Multiplicity $m_{ij} \sim$ interpolated point (x_j, α_i)
- Given a polynomial Q(x, y), m_{ij} implies $D_{r,s}(Q(x, y))|_{x=xj, y=\alpha i} = 0$ for $r + s < m_{ij}$
- **Definition 1:** Let $\Lambda(m)$ denotes a set of zero condition constraints (r, s) indicated by m, then $\Lambda(M)$ denotes a collection of all the sets $\Lambda(m_{ij})$ defined by the entry m_{ij} of M $\Lambda(M) = \{\Lambda(m_{ij}), m_{ij} \in M\}$

II. Defining the zero condition constraints

• **Definition 2:** Let m_{ij}^{ν} and $m_{ij}^{\nu+1}$ denote the entries of matrix M_{ν} and $M_{\nu+1}$, the incremental zero condition constraints introduced between the matrices are defined as a collection of all the residual sets between $\Lambda(m_{ij}^{\nu+1})$ and $\Lambda(m_{ij}^{\nu})$ as:

$$\Lambda(\Delta \mathsf{M}_{_{V^{+}1}}) = \Lambda(\mathsf{M}_{_{V^{+}1}}) - \Lambda(\mathsf{M}_{_V}) = \{\Lambda(m_{_{ij}}{^{_{V^{+}1}}}) - \Lambda(m_{_{ij}}{^{_V}})\}$$

II. Progressive Interpolation

 PIP (Λ(M), G) – the Interpolation process that involves a group of polynomials G with respect to constraints of Λ(M).

II. Progressive interpolation

PIP (Λ(M), G) – the Interpolation process that involves a group of polynomials G with respect to constraints of Λ(M).

■ IP (
$$\Lambda(M_1)$$
, G_1) +
PIP($\Lambda(M_1)$, ΔG_1) + PIP($\Lambda(\Delta M_2)$, G_2) +
PIP($\Lambda(M_1)$, ΔG_1) + PIP($\Lambda(\Delta M_3)$, G_3) + →
Factorisation
:
PIP($\Lambda(M_{v-1})$, ΔG_{v-1}) + PIP($\Lambda(\Delta M_v)$, G_v) +
:
PIP($\Lambda(M_{max-1})$, ΔG_{max-1}) + PIP($\Lambda(\Delta M_{max})$, G_{max})

 The number of 'factorisations' has been increased. However, its complexity is rather marginal compared to interpolation.

II.Implementation algorithms

Progressive Reliability Transform (*PRT*), producing

 $M_1, M_2, M_3, \dots, M_v, \dots, M_{max}$

• The output list size l_v is determined by $l_v = \left| \frac{\Delta_{1,k-1}(C(M_v))}{k-1} \right|$

•
$$\Delta_{1,k-1}C(M_v) = \deg_{1,k-1}(x^a y^b | ord(x^a y^b) = C(M_v))$$

II. Implementation algorithms

Progressive Interpolation (*PIP*)

• From iteration $v \rightarrow v + 1$:

1) Generate an incremental polynomial group

$$\Delta G_{V} = \{ y^{l_{v}+1}, y^{l_{v}+2}, \dots, y^{l_{v+1}} \}$$

Perform $PIP(\Lambda(M_v), \Delta G_v) \rightarrow \Delta G_v'$, then update the new polynomial group as $G_{v+1} = G_v \cup \Delta G_v'$

2) For the updated polynomial group G_{v+1} , perform *PIP* ($\Lambda(\Delta M_{v+1}), G_{v+1}) \rightarrow G_{v+1}$ '.

II. Complexity reduction

- Computational complexity (*O*): the averaged number of finite field arithmetic operations for decoding one codeword frame;
- Complexity reduction (Θ):

II. Complexity reduction

Measurement of the decoding parameter /

Measure the assignment of	with respect to the channel	quality for (15,5) RS code
---------------------------	-----------------------------	----------------------------

l SNR	1	2	3	4	5	6	7	8	9	10
2dB	21.2130	15.8959	10.2188	7.0340	5.2340	4.0986	2.6862	2.6031	1.7170	29.2994
5dB	81.0490	12.7920	3.2638	1.0861	0.5532	0.3028	0.1745	0.1230	0.1048	5.5078
8dB	99.9339	0.0638	0.0014	0.0004	0.0003	0	0.0002	0	0	0

II. Performance evaluatioin

The (15, 5) RS code with BPSK, over AWGN channel

II. Performance evaluation

- Successful decoding criterion: $S_M(C_C) > deg_{1,k-1}(Q(x, y))$
- Conventional ASD algorithm might 'overkill' the decoding problem
- Example: performing ASD and PASD with *I* = 10

	KV(ASD)			PASD			
1	$S_M(C)$	2	$\deg_{1,k-1}Q(x,y)$	$S_M(C)$		$\deg_{1,k-1}Q(x,y)$	
1	4	<	8	4	<	8	
2	10	<	12	10	<	12	
3	13	<	16	13	<	16	
4	19	<	20	19	<	20	
5	21	<	24	21	<	24	
6	27	<	28	27	~	28	
7	30	<	32	30	<	32	
8	34	<	36	34	<	36	
9	41	>	40	41	>	40	
10	44	=	44				

An example based on (15,5) RS code for understanding why the PASD algorithm can outperform the ASD algorithm

Conclusions

- Construction of a Hermitian code and some of its properties;
- Hermitian code can be a promising candidate to replace RS code in future applications
- Algebraic soft-decoding of Hermitian codes, including the interpolated zero condition, validity of the decoding, optimal performance bound and complexity reduction approaches.
- Modernised algebraic soft decoding algorithm: a progressive approach
- Two key steps of PASD: progressive reliability transform & progressive interpolation
- Optimises both decoding complexity and performance
- A general approach for all sorts of algebraic decoding problems.

Future work

A continue thinking:

PASD algorithm \rightarrow performance ~ Π dependent;

 \rightarrow complexity ~ Π dependent;

 An priori process to the PASD algorithm can be introduced to enhance the reliability of Π, enabling both a performance improvement and a faster convergence of decoding complexity.

References

- [Guruswami99] V. Guruswami and M. Sudan, "Improved decoding of Reed-Solomon and algebraic-geometric codes," *IEEE Trans. Inform. Theory*, vol. 45, pp.1757-1767, 1999.
- [Koetter03] R. Koetter and A. Vardy, "Algebraic soft-decision decoding of Reed-Solomon codes," IEEE Trans. Inform. Theory, vol. 49, pp.2809-2825, 2003.
- [Chen09] L. Chen, R. Carrasco and M. Johnston, "Soft-decision list decoding of Hermitian codes," IEEE Trans. Commun., vol. 57, pp.2169-2176, 2009.
- [Lee10] K. Lee and M. O'Sullivan, "Algebraic soft-decision list decoding of Hermitian codes," IEEE Trans. Inform. Theory, vol. 56, pp.2587-2600, 2010.
- [Nielsen01] R. Nielsen, "List decoding of linear block codes," PhD thesis, Lyngby, Demark Tech. Univ. Denmark, 2001.
- [Chen08] L. Chen, R. Carrasco and M. Johnston, "Reduced complexity interpolation for list decoding Hermitian codes," *IEEE Trans. Wireless Commun.*, vol. 7, pp.4353-4361, 2008.
- [EI-Khamy06] M. EI-Khamy and R. McEliece, "Iterative algebraic soft-decision list decoding of Reed-Solomon codes," *IEEE Journal on Selected Areas in Communications*, vol. 24, pp.481-489, 2006.
- [Chen07] L. Chen, R. Carrasco and E. Chester, "Performance of Reed-Solomon codes using the Guruswami-Sudan algorithm with improved interpolation efficiency," *IEE Proc. Commun.*, vol. 1, pp.241-250, 2007.
- [Gross06] W. Gross, F. Kschischang, R. Koetter and P. Gulak, "Applications of algebraic softdecision decoding of Reed-Solomon codes," *IEEE Trans. Commun.*, vol. 54, pp.1224-1234, 2006.
- [KoetterITW03] R. Koetter and A. Vardy, "Complexity reducing transformation in algebraic list decoding of Reed-Solomon codes," *Proc. IEEE Inform. Theory Workshop,* April, 2003.
- [Tang11] S. Tang, L. Chen and X. Ma, "Progressive list-enlarged algebraic soft decoding of Reed-Solomon codes," *IEEE Commun. Lett.*, to be submitted, 2011.

Acknowledgement

- The UK government Overseas Research Scholarship (ORS) scheme, supporting my PhD engagement (Part I of the presentation).
- The National Natural Science Foundation of China (NSFC), supporting the proposed work of Part II. Project: Advanced coding technology for future storage devices, ID: 61001094. Role: principle investigator (PI).
- Siyun Tang for implementing the PASD algorithm and Prof. Xiao Ma for his thoughtful discussion

Thank you!