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‘ |.Construction of Hermitian Codes

= Hermitian Curve: H,(x, y, z) = x¥*1 + yWz + yz¥
o Affine component: H,(x, y, 1) = x¥*1 + y* + y — used for code construction!

= Size of GF(q) decides the degree of the curve: w =\/5
= Genus of the curve: g = W(W—l)/z
= Designed distance of a (n, k) Hermitian code: d" =n—-k—g + 1

= Size of the code: number of affine points p; = (x; y)), [p] = w3 (> q)

g 1 6 28 120
n 8 64 512 4096




|.Construction of Hermitian Codes

Point of infinity p..: for points that we can find in H (1, y, z), H,(x, 1, z) and
H,(x, y, 1), the one with the form of (x;, y;, 0).

o Variables x, y, z have a pole order (or weights) at p.,, x — w, y — w+1, z -- ? (depends on k).

Affine points p;: points on an affine component. E.g. for H (x, y, 1), p;
satisfies H,(x; y, 1) = 0.

Pole basis L,: a set of rational functions @, with increasing pole orders

o Curve Hyhas L, = {1 XY, X2, Xy, y?, X2y, xy?, y8, x2y?, xy8, y4, ...}

1

o Curve Hy has L, = {1,%, ¥, X4, Xy, ¥2, X3, X2y, xy2, y3, X4, X3y, x2y2, xy3, y*, Xy, x3y2, x2y3, xy*,
¥, ..

1,2,3 6,7 11

Zero basis Z,, . a set of rational functions y,, ,; with increasing zero orders
at p;.



|.Construction of Hermitian Codes

For a Hermitian code defined on the curve H,;:
o Find out n affine points on the curve — decide the length of the code
o Select the first Kk monomials in L, — decide the dimension of the code

o With information symbols (uy, uy, ..., U,.4) & GF(q), the message polynomial can be written
as:

u(x, y) = Ug®@o + U@y + ...+ U Py 4
o And the codeword is generated by:
(Co, C1s -+, Cnog) = (U(Pg), U(P4), -, U(Pp.1))

Example: Construct a (8, 4) Hermitian code defined over GF(22)

o Curve:H,=x3+y?+y

o Affine points py = (0, 0), p; = (0, 1), P, = (1, 0), p3 = (1, 02), ps = (0, ), s = (0, 02), P = (02, ),
p; = (02, 02).

o Information symbols 1, o, 1, 02, and message polynomial u(x, y) =1 + ox + y + g2x2.

o Codeword (cy, ¢4, Cy, C3, C4, Cs, Cs, C7) = (1,0, 0, 0%, 0, 02, 0%, 0).



|.A Comparison with RS Codes

Codes
Properties (n, k) RS code (n, k) Hermitian code
Algebraic affine curves | y =0 X+ v+ y=0
2 2 w
Pole basis 1, X, X2, x3, ... 1;V_)1<, g’ X%, Xy‘;/y ) XY,
xWly2 L xy, ywr L
Affine points (p) Xo X1s Xgr - X (X0 Yo), (X1, ¥1), (Xz, ¥2), -,

(Xn-1 ’ yn—1 )

Transmitted message
polynomial (u)

U(x, y) = Uy + Uydy + Uy
ot U O

Codeword ( ¢)

(Coy €15 ++vs Cpq) = (U(Py),
u(py), -, U(Pp4))




|. A Comparison with RS codes

Advantage of AG codes: larger codes can be constructed from the same finite field as
RS codes, resulting better error-correction capability;

Example, over GF(64)

Rate 0.3 Rate 0.56
Herm (512, 153) RS (63, 19) Herm (512, 289) RS (63, 35)
d* = 332 d =45 d =196 d=29
=165 T=22 t=97 t=14
990 bits 132 bits 582 bits 84 bits

Disadvantage of AG codes: It is not a Maximum Distance Separable (MDS) code. Very

high rate AG codes will be left with marginal error-correction capability.




1.A Comparison with RS codes

= AG vs. concatenated RS (512 = 8 x 63)

§rRs T [T I [y ) [ e
1AG

= Complexity: O(n")

= Distribution of errors

X X
Ess s [ @ Fseesss [ 8 [eee | @eeeses & 9] 1=22%x8=176
T=165

= Diversity on codes
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|.Overview of the algebraic decoding

Decoding philosophy evolution

Unique decoding List decoding
| : :
The Berlekamp-Massey algorithm The Guruswami-Sudan algorithm (Hard-decision)
The Welch-Berlekamp algorithm The Koetter-Vardy algorithm (Soft-decision)

The Sakata algorithm with majority voting [Guruswami99], [Koetter03]
9



|.Overview of the algebraic decoding

Key processes: Interpolation (construct Q(x, y, z)) + Factorisation (find out u(x, y))

From hard-decision decoding to soft-decision decoding (GS - KV)

Hard-decision received word: R = (rg, ryy eees ¥,1)

Interpolated points: (py, 7o) (P15 71)s <=5 Pp1s Fe1)
With certain multiplicity value m, perform:

\

Interpolation Q(x, y, 7) Factorisation u(x, y)

Soft-decision reliability matrix I1 (2> M)

Encoding Po D1 P P P4 Ps P Pr
Co (e c, C3 Cy Cs Co Cy
Channel ro r ry s r, s g r,
10.96/10.21] 0.01 [0.46| 0.00 0.00 [0.69| 0.00] o where a multiplicity
0.00 0.02 0.00 [0.53][0.90] 0.03 0.00 0.01] 1 value m; was assigned
I1= to the unit
0.03 [0.74| 0.03 0.01 [0.10] 0.02 |0.28]/0.99| &

10.01 0.03 [0.94] 0.00 0.00 [0.95] 0.03 0.00] ¢*

P 0) @1,0) 261 (3 0) Py D Ps5,6%) (P, 0) (P7,0)
(plso') (p39 1) (P4,O') (p696)




. Algebraic soft decoding of Hermitian

codes
From RS to Hermitian: ichenosy, [Leeto)

o Bivariate monomials (polynomials) - trivariate monimials (polynomials)

o Define the interpolated zero conditions
Calculate the corresponding coefficients of a Hermitian curve

o Validity of the algorithm
o Optimal performance bound

o Complexity reduction methods



|. Trivariate monomials (Polynomials)

For a code defined on the curve H, = x¥*1 + y" + y,
monomial xyizk, 0 <i<w,j=20and k=0
Decoding a (n, k) Hermitian codes, deg,(z) = deg,(P.1)
deg,(xyiz) = iw + j(w+1) + kdeg,,(2)
For to monomials x/y/'z<1 and x2y/2z<2
Xy ZK1 < xi2yi2 zk2
if deg,,(x1y/ZK") < deg,(x2)?Z?), or deg, (X ZK") = deg, (x?y?Z?) and k1 < k2.
A lexicographic order can be assigned to monomials.

0o O O O

O

Polynomials Q(x, y, z) = ZQab¢a (x,»)z" | Q,, € GF(q)

a,beN

o Identify the maximal monomial in Q(x, y, z) as ®,z, then deg,(Q) = deg,(®,Z"")
o Leading order, lod(Q) = ord(®_z*)

NW(§) =| {¢a2b : degw(géazb) <0, (Cl,b, 5) S N} | Define the number of monomials

AW (V) = min {5 N w (5 ) >V, Ve N } Define the weighted degree of monomials




|.Define the Interpolated Zero Conditions

To interpolate unit (p;, r;) (or (x; y; ;)
Recall the zero basis Z,, ,; with rational functions g, , as

w, pi

Wpl.,a :Wpi,l+(w+1)§ = (x_'xi)/i[(y_yi)_'x"iw('x’-_')(:1')]59(0S ]’ S W,52 O)

Zero condition with multiplicity m for polynomial Q(x, y, z) = > 0,8, (x, )z’

a,beN
o Itcanbe written as: Q(x,,z) = Za en Q;Z i )l//p (z-r)’
o Q(pr) 0 fora+B<m.

b
p

(p, n) _ b-p
Z Qab ya,pi,ari [Nielsen01]

a,b>p /

A key parameter for determining the polynomial’s zero condition!

Since ¢, = ZaeN Vapra¥ pa @nd z’ = Zﬂ<b£ j”ibﬂ(z_”i)ﬂ




|.Calculate the Corresponding Coetficients

= Lemma: 4, =3 VupaWpo <> Vna=3 Gaba , Ypa= Y. GabatoL.

o=l aclN o<l

“ Recursive corresponding coefficient search algorithm [Chen08]

Algarithm A: Determining the corresponding coefficients
Va.pe.w Detween a pole basis monomial ¢, and zero basis
functions 'y, -

Step 1: Initialise all corresponding coefficients 5, 5, o = ;
Step 2: Find the zero basis fanction 'y, » with LA (¢, o)

n. and let g py 0 = 1:

Step 3: Imitialise fonction = Ung o

Step 4: While (v = da) {

Step 5: Find the second largest pole basis monomial ¢y
with coefficient ;1 in -':'

Step 6: In £, ... find a zero basis function v, , Wwhose
leading monomuial LA (g, o) = @y _1., and let the
corresponding Eﬂtfﬁl’.‘il:l’!t Ya.py o — GL—13

Step 7: Update " = %' + Ya.p .o Wpe,o:

]




|. Validity of the Algorithm

Condition 1: From the perspective of solving a linear equation group

/ NW(6) > CM

Freedom (Nr of coefficients) Constraints

Condition 2: From the perspective of solving equation Q(x, y, u) =0
Su( ¢ ) >deg,(Q(x, y, 2))
/ \

Total zero order of O Pole order of QO

Theorem 2: Given the multiplicity matrix M and the resulting interpolated
polynomial Q(x, y, z), if the codeword score Sy,( ¢ ) is large enough such
that:

Sul ¢ ) > deg (Q(x, ¥, 2))

message polynomial u can be found out by factorising Q as: z— u | Q(x, y, 2)
or Q(x, y, u) = 0. - This gives a tight condition of successful list decoding!!!

[Chen09]



|. Prove the Validity of the Algorithm

A corollary that can embrace both of the successful decoding conditions.
Corollary 3: Message polynomial f can be found out by z - u | Q(x, y, z) if

Su(c)> A, (Cw)

Since A, (C,,) guarantees N,(5) > C,, (Condition 1 is met!)

Since deg,(Q(X, ¥, 2)) SA(Cy), if Su( ¢) > A, (Cw), Su(c ) > deg,(Q)
(Condition 2 is met!) S~

This can be seen later.

Remark: Solving the linear polynomial group does not give a tight bound on
successful list decoding, but solving the polynomial Q(x, y, u) = 0 does!



|.Optimal Performance Bound

Corollary 4: Let w, = deg,(®,.1), N,(0) > &(0 - g)/2w, given & > 2g — 1. And
N,(8) = 6%/2w, with § > .

With / -0 algebraic soft decoding algorithm’s asymptotic optimal
performance can be achieved.

|> % Cy,>>and A, (C,) >  itresults A, (C),)=42w.C,
Corollary 3 (Sy( ) > A, (CM) ) can be interpreted as:

n—1 g—1 n—1
E -,lﬁ,-__,— -t i E T (1M 5 + 1).

[Chen09] F=0 i=10 7=




|.Optimal Performance Bound

]: M,

Asymptotic condition (when C,, 2 ). — .

We could further have

n—1 ig—1 n—1

= - g ; (il
— E Wi § = —\ 1t E E Wi Mi g+ _.]'
7] n g

j= i} =1} k] =]

Since with s 2 «, n/[s 2> 0 and
n—1 I m—1
3 Jozz

q=i / 1= j=0

In KV decoding of RS codes, w_is replaced by & - 1

The performance of the KV algorithm is bounded by the quality of the received
information I1.

Had the quality of [1 been improved, optimal performance bound can be enhanced.
[El-Khamy06]



|.Complexity Reduction Methods

Modified reliability transform algorithm (introducing a stopping
criterion) [Chen09]

o In KV, reliability transform is stopped once a predefined s =Zi’j m; . is met.
o Reliability transform is stopped once a predefined output list size /is met.

Pre-calculation of the corresponding coefficients [Chen08]
o Determine 7, . .«

Elimination of the unnecessary polynomials in the group [Chen07]
o Eliminate polynomials with lod(Q) > C,



|. Complexity reducing interpolation

Pre-calculation of the corresponding coefficients and elimination of the

unnecessary polynomials

Pre-calculation of the
corresponding

coefficient >

Eliminate polynomials
with /od over C

A 4

G ={Q| D(Q) = 0}

After C iterations,
output Q°

v

Bilinear
modifications

For Q with
D(Q) =0

In the end, the minimal polynomial Q in group G is chosen!



|. Complexity reducing interpolation

The (64, 19) Hermitian code

1.E+07

Computation Complexity
tr
+
()
N

—&— Original Interpolation (1 = 2)

—<& - Complexity Reducing Interpolation (1 = 2)
—&— Original Interpolation (1 = 3)
— A - Complexity Reducing Interpolation (1 = 3)

percentage of complexity

1.E+05

1 2 3 4 5 6 7 8 9 10 11 12
E, /| N, [dB]

13

14

15

16

17

18

19 20



|. Arising Awareness

Why Condition 1 (N,(0) > C,,) is NOT a tight bound?

Since lod(Q*) < Cy, if deg,,(Q*) = 6% then

N(5%) < Cy Ny(0) > Cy

N, (8) > C,, is the successful decoding criterion w.r.t. the polynomial group
G. However, the minimal polynomial in G does not meet this condition.

To access the decoding performance, only Condition 2 gives a tight bound:
Su( ¢ ) > deg,(Q(x, v, 2))

Since deg,(Q(x, ¥, 2)) = A, (Cy), without performing the interpolation
process, the theoretical assessment (e.g. Sy( ¢ ) > A, (Cy)) produces a
relatively negative results.



|.Performance Evaluation

Hermitian code (512, 289) over AWGN channel

1.E+00
—— Uncoded
---- Sakata )
LE-O1 -G~ hard-decision (Optinmal) lis the
—4— soft-decision (1= 1) | — output list
—&— soft-decision (1=25) ;
LE-02 —&— soft-decision (1= 10) list decoder
—+— soft-decision (1= 20)
—X— soft-decision (1= 30)
S ;
% LE03 - —&— soft-decision (Optimal) i
1.LE-04
LE-05 -
1.LE-06
6 7
.... approaching the optimal .... performance advantage of

bound! the list decoding algorithms!




|. Hermitian code ~ RS code

Both codes are defined in GF(64), over AWGN channel

1.E+00 ; ; ;
—&— Hermitian (512, 289), soft-decision (1= 1)
—>— Hermitian (512, 289), soft-decision (1 = 2)
—— Hermitian (512, 289), soft-decision (1 =5)
1.E-01 - —A--RS (63, 35), soft-decision (1 =1)
T —X=-RS (63, 35), soft-decision (1 =2)
I :::X - £--RS (63, 35), soft-decision (I = 5)
1.E-02 - e
7 1.E-03 - “A
M SO
\A\
N S e
1.E-04 - N N
\\x \\
AN AN
\\ A\
N \ \
1.E-05 - o X \\
A
1.E-06
3 3.5 4 4.5 5 5.5 6 6.5 7
E, / N [dB]
T Codes i 2 - Trr
iy, r | q 3 T -y 5
Output size ™ __ Hemmitian (312, 289} | RS (63, 33) | RS (235, 144)
i =1 7 = RO2 = 103 & =430
i=1 L =1813 C =24 C = #5349
I1=5 C = 46072 N & =71h ' = 3004




|. Hermitian code ~ RS code

Hermitian code is defined in GF(64) and RS code is defined in GF(256)

1.E+00

—&— (512, 289)Hermitian code,soft-decision(l = 1)
—>— (512, 289)Hermitian code,soft-decision(l = 2)
—— (512, 289)Hermitian code,soft-decision(l = 5)
1.E-01 - —£A-(255, 144)RS code,soft-decision(l = 1)
— L —> - (255, 144)RS code,soft-decision(] = 2)
SSSTR —B3-(255, 144)RS code,soft-decision(l = 5)
1.E-02
\
~] . E-03 A
- X
& \
\
\
1.E-04 A \\
v A
\ \\
1.E-05 3
= A
1.E-06
3 3.5 4 4 < 6 6.5 7
E, / N, [dB]
;t;:;r__{{zé" _ f_fmf_ Hermitian (512, 289) | RS (63, 35) | RS (235, 144)

] C=802 <« | C=103 O — 430
= 1%13 C=204—, C=5850

T — 1600 =% O =0




I1. Modernised algebraic decoding

= Challenges = Inspirations
= Modernisation: Progressive algebraic soft decoding (PASD)

= Complexity reduction and performance evaluation




[I. Challenges = Inspirations

The algebraic soft decoding is of high complexity, mainly due to the iterative

interpolation process
A rebound thinking — a common phenomenon for most of the modern decodings

high

The current system
Inspiration: Can we design an

algebraic decoder which can also

adjust its complexity according to
the quality of the received word?

The future system

Complexity

We can ‘borrow’ the 1dea from
iterative decoding!

low

bad Quality of the received word good



[1. Challenges = Inspirations

A review towards the modern codes (LDPC or Turbo codes)
o The Belief Propagation (BP) algorithm with a parity check matrix H

R

—>

Initialisation

\

Horizontal step

\

Vertical step

Hard decision

N

C

No

cH" =079
Yes, é

* An iterative process

* Incremental computations between iterations
* A continue test of the decoding output

* Decoding capability and complexity can be

adjusted according to the quality of ‘R



[1. Modernised algebraic decoding

The existing complexity reduction approaches

Facilitated reliability transform: Af =|1-T1| [Gross06]

Coordinate transform: {(ag, ¥o), (Q1;, ¥1)s -+ (Qhe1s Y1), (O Yi)s «-o (Qrgs V1))

A4

{(ay, 0), (ay, 0), ..., (ay4, 0)| (), Vi), -+ (Ap1s Vit)} [KoetterITWO3]

Elimination of unnecessary polynomials: G = {Q | lod(Q) < Cy;} [Chen07]

Hybrid decoding: M BM yes é (Gross06]

no

y

ASD (KV)——>

>




l|.Construction of a (17, k) RS code

The message polynomial evaluation

o Let u=(uy uy, ..., u.) € GF(q) be a message vector, forming a
message polynomial:

U(X) = Ug + UyX + -+ Uy q XK

o Choosing n (n < q) distinct elements ay, a4, ..., a,., € GF(q)\{0}, the
output codeword ¢ can be generated as

c=(cy, Cqy .-+, Cpq) = (U(aq), u(ay), ..., u(a,4))



II. A graphical thinking

ASD (/=5) PASD(/=1>2—>3—>4->5)

— L ={cg,c,f

L ={c,,cq,0,,¢,C10}

— L ={c5,¢4,C9,C,4 )

~ ~ ~ ~ ~
Il

1
2
3 o> L={c,,cy,Cp}
4
5

— L ={c,,c,,C,,C9,Cp}

If ¢ 1s the transmitted codeword, PASD completes the decoding with / = 1 rather than / =5 as the KV
algorithm — Optimizing the assignment of decoding parameters & complexity.



I. The PASD decoding system

Inerpolation Factorization

O(x, ) p(x), L

Terminate Y €S

Yes Qutput
decoding

u(x)

Update output list-size lv+1 — ]v +/

l,- designed output list size at each iteration;
l..x- the designed maximal output list size;
/- step size for updating the output list size;

L- the output list of all polynomials p(x) such that y-p(x)|Q(x, y).

Two key steps: Progressive Reliability Transform (PRT) > M, M,, ..., M,, ...
Progressive Interpolation (PIP) = Q,(x, y), Q,(X, ¥), ..., Q/(X, ¥), ...

[Tang11]



[1. Detining the zero condition constraints

Multiplicity m; ~ interpolated point (x;, a))
Given a polynomial Q(x, y), m; implies D, (Q(X, ¥))|y=y; =i = 0 for r + s <m;

Definition 1: Let A(m) denotes a set of zero condition constraints (r, s) indicated by
m, then A(M) denotes a collection of all the sets A(m;;) defined by the entry m; of M

AM) = {\(my), m; € M}

Example:

M =

S = O DN
_—o = O

S o = O

AM) = (0, 0), (1, 0), (0, D)} 0, Do1> Do
@109 {(Oa O)}H’ {(Oa O)}12
{(Oa O)}2O> {(09 0)9 (19 O)a (Oa 1)}219 022
@307 @319 {(Oa O)}32}



[1. Detining the zero condition constraints

Definition 2: Let m; and m;**! denote the entries of matrix M, and M,.,, the
incremental zero condition constraints introduced between the matrices are defined
as a collection of all the residual sets between A(m;**') and A(m,") as:

ABM,.1) = AM,.1) = AMM,) = {A(m*1) = A(m;)

Example: 2 0 0 1 0 O
0 1 1 0 0 1
M, = M, =
1 2 O 1 1 O
0 0 1| 0 0 1]
AM,) = {{(0, 0), (1, 0), (0, 1)} 40, Do1> Di2s AM,) 5 {{(0, 0)} 49, Do15 Do
D0, {(0, 0)} 11, {(0, 0)} 45 D10, D11, (0, 0)} 1,
{(0, 0)}5, {(0, 0), (1, 0), (0, )}5,, Dy, 100, 0)} 29, 10, 0)}5y, Dy
Ds0, Dy, {(0, 0)}32} \ / 0309 @319 {(0, O)}32}
10 constraints \ — Y 5 constraints

A(AM,) = {{(1, 0), (0, 1)} 90, Do1> Do
@109 {(Oa 0)}119 @12

@209 {(19 0)9 (09 1)}219 @22 5 traint
@3()) @31) @32} constraints




[1. Progressive Interpolation

PIP (A(M), G) — the Interpolation process that involves a group of
polynomials G with respect to constraints of A(M).

M1, M2, M3,
e
AM,  AM,
AM)JAM), M),
B A(AM,) | A(AM;)
G G G
—r— =
AG»] AGZ

A, AM,), ..

/\(AMV)

G

\'

AGv-1

max

AM

max-1 )’ /\(Mmax)

G

NAMax)

= Qu(x, ¥)
G

max-1

AG

max

max-1




[1. Progressive interpolation

PIP (A(M), G) — the Interpolation process that involves a group of polynomials G
with respect to constraints of A(M).

PIP(A(M,), Gy) +
PIP(A(M,), AG,) + PIP(A(AM,), m

IP (AMpax): G

max)

- PIP(A(M,), AG,) + PIP(A(AM,), G3) + —> | Factorisation

PlP(/\(M;-O, AG,,4) + PIP(A(AM,), G,) + 7

PIP(/\(M.

max-1 )

) AGmax-1) + PIP(/\(AMmax)’ G

max)

The number of ‘factorisations’ has been increased. However, its complexity is
rather marginal compared to interpolation.



N Implementation algorithms

= Progressive Reliability Transform (PRT), producing

A (C(M))
k—1

= The output list size I, is determined by /, =L

s Ay 4C(M,) = degy ,.4(x2y? | ord(x?y?) = C(M,))

| > Algorithm Reliability transform with stopping criterion [,
/ Inerpolation Factorization . P i .‘ % 4 4 4 ol [ X
nl Wl Mo 1 oty ooy I Input: Reliability matrix II, IT!_;, and the maximal output list size [, and multiplicity matrix M,_;.
N:,)v:v_,_l_ Output: Multiplicity matrix M,
Terminate Y €3 s Outpu s Trate * _ TT* = i
deCOdintg Y (l)l(t)lz] Step l.. Inl“{it& ].-.[1. = ].-.[1._1| ML‘ = Mi-‘—l"
Update output list-size | = 1 step 2: Find the largest entry 7, in II; with the position (i, j);

step 3: Update 7}, = -4
step 4: Update my; = m;; + 1

step 5: Compute C(M Zq GZ” ‘}1nr1%.,(m%1 +1);

131.1-1{ (My)) .
.

step 6: Compute [, = |

step 7: If 5 > [, return M,; otherwise go to step 2.




[1. Implementation algorithms

Progressive Interpolation (PIP)

Inerpolation Factorization

O(x, ) rx), L

Yes Output
u(x)

Update output ligt-size lv+1 - [V +/

From iteration v 2> v + 1: !
1) Generate an incremental polynomial group

AGV _ {ylV+l , ylv+2 I ylv+1 }

Perform PIP(A(M,), AG,) 2 AG,’, then update the new polynomial group as
Gv+1 — Gv - AGV'

2) For the updated polynomial group G,.,, perform PIP (A(AM,,4), G,.+1) 2 G,.¢"



[1. Complexity reduction

Computational complexity (O): the averaged number of finite field arithmetic
operations for decoding one codeword frame;

Complexity reduction (©):

— OASD B OPASD % 100%

ASD

1.00E+08

The (15, 5) RS code

1.00E+07 |-

1.00E+06

1.00E+05

Computation complexity

3

1.00E+04

——ASD( [ =2)
——PASD( /=2)
—A-ASD( /= 4)
—A—PASD( /= 4) ) .
~6-ASD (7 = 10) %--percentage of complexity reduction

~@-PASD ( [ =10)

+00E-+03

0 1 2 3 4 5 6 7 8
SNR(dB)



11 Complexity reduction

Measurement of the decoding parameter /

Measure the assignment of [ with respect to the channel quality for (15.5) RS code

[
SNR

[

5 6 7 8 9 10
2dB 21.21300 15.8959 10.2188 7.03400 5.23400 40984 2.6862 2.6031 1.71701 29.2994
5dB 81.0490, 12.792( 3.2638| 1.0861| 0.5532 0.3028 0.1745 0.1230 0.1048 5.5078
8dB 099.9339] 0.0638| 0.0014| 0.0004 0.0003 0 0.0002 0 0 0




‘ 1. Performance evaluatioin

= The (15, 5) RS code with BPSK, over AWGN channel

1.E+00
LE01 T
LE-02 |
M \~
A E‘\\
N \‘
N AN
LE-03 1 —+— AHD (Optimal)
—o— ASD (Optimal)
-G-ASD(7=2) "
—e—PASD( /= 2) '\,\
~3-ASD(7=4) X
1.E-04 1 —m—PASD( / = 4) N\
—-A= ASD (7 = 10) v\
—A—PASD ( 7 =10) \
3
|
1.E-05

SNR(dB)




1. Performance evaluation

Successful decoding criterion: Sy( ¢ ) > deg; ,1(Q(x, y))
Conventional ASD algorithm might ‘overkill’ the decoding problem

Example: performing ASD and PASD with /=10

EV(ASDY PASD

] S (@ | |degss 03| S(© | | degyr, OC.)
1 4 8 4 = 8
2 10 < 12 10 12
3 13 = 16 13 = 16
- 19 = 20 19 == 20
5 21 = 24 21 - 24
6 27 = 28 27 < 28
7 30 < 32 30 < 32
8 34 < 36 34 = 36
o] 41 = 40 41 = 40
10 44 = 44 — —=

An example besed on (13.3) BS code for understanding why the
PASD algorithm can outperform the ASD algorithm



Conclusions

Construction of a Hermitian code and some of its properties;

Hermitian code can be a promising candidate to replace RS code in future
applications

Algebraic soft-decoding of Hermitian codes, including the interpolated zero
condition, validity of the decoding, optimal performance bound and
complexity reduction approaches.

Modernised algebraic soft decoding algorithm: a progressive approach

Two key steps of PASD: progressive reliability transform & progressive
interpolation

Optimises both decoding complexity and performance

A general approach for all sorts of algebraic decoding problems.



Future work

A continue thinking:
PASD algorithm - performance ~ 1 dependent;
- complexity ~ 1 dependent;

An priori process to the PASD algorithm can be introduced to enhance the
reliability of I'l, enabling both a performance improvement and a faster
convergence of decoding complexity.

R u(X)
-H H
BP () PASD
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